A domain linking the AMPA receptor agonist binding site to the ion pore controls gating and causes lurcher properties when mutated.

نویسندگان

  • Sabine M Schmid
  • Christoph Körber
  • Solveig Herrmann
  • Markus Werner
  • Michael Hollmann
چکیده

Ionotropic, AMPA-type glutamate receptors (GluRs) critically shape excitatory synaptic signals in the CNS. Ligand binding induces conformational changes in the glutamate-binding domain of the receptors that are converted into opening of the channel pore via three short linker sequences, a process referred to as gating. Although crystallization of the glutamate-binding domain and structural models of the ion pore advanced our understanding of ligand-binding dynamics and pore movements, the allosteric coupling of both events by the short linkers has not been described in detail. To study the role of the linkers in gating GluR1, we transplanted them between different GluRs and examined the electrophysiological properties of the resulting chimeric receptors in Xenopus laevis oocytes and HEK293 cells. We found that all three linkers decisively affect receptor functionality, agonist potency, and desensitization. One linker chimera was nondesensitizing and exhibited strongly increased agonist potencies, while fluxing ions even in the absence of agonist, similar to properties reported for the GluR1 lurcher mutation. Combining this new lurcher-like linker chimera with the original lurcher mutation allowed us to reassess the effect of lurcher on GluR1 gating properties. The observed differential but interdependent influence of linker and lurcher mutations on receptor properties suggests that the linkers are part of a fine-tuned structural element that normally stabilizes the closed ion pore. We propose that lurcher-like mutations act by disrupting this element such that ligand-induced conformational changes are not necessarily required to gate the channel.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation and Desensitization Mechanism of AMPA Receptor-TARP Complex by Cryo-EM.

AMPA receptors mediate fast excitatory neurotransmission in the mammalian brain and transduce the binding of presynaptically released glutamate to the opening of a transmembrane cation channel. Within the postsynaptic density, however, AMPA receptors coassemble with transmembrane AMPA receptor regulatory proteins (TARPs), yielding a receptor complex with altered gating kinetics, pharmacology, a...

متن کامل

An NMDA receptor gating mechanism developed from MD simulations reveals molecular details underlying subunit-specific contributions.

N-methyl-D-aspartate (NMDA) receptors are obligate heterotetrameric ligand-gated ion channels that play critical roles in learning and memory. Here, using targeted molecular dynamics simulations, we developed an atomistic model for the gating of the GluN1/GluN2A NMDA receptor. Upon agonist binding, lobe closure of the ligand-binding domain produced outward pulling of the M3-D2 linkers, leading ...

متن کامل

Structural and single-channel results indicate that the rates of ligand binding domain closing and opening directly impact AMPA receptor gating.

At most excitatory central synapses, glutamate is released from presynaptic terminals and binds to postsynaptic AMPA receptors, initiating a series of conformational changes that result in ion channel opening. Efficient transmission at these synapses requires that glutamate binding to AMPA receptors results in rapid and near-synchronous opening of postsynaptic receptor channels. In addition, if...

متن کامل

Measurement of Conformational Changes accompanying Desensitization in an Ionotropic Glutamate Receptor

The canonical conformational states occupied by most ligand-gated ion channels, and many cell-surface receptors, are the resting, activated, and desensitized states. While the resting and activated states of multiple receptors are well characterized, elaboration of the structural properties of the desensitized state, a state that is by definition inactive, has proven difficult. Here we use elec...

متن کامل

GABA(A) receptor beta 2 Tyr97 and Leu99 line the GABA-binding site. Insights into mechanisms of agonist and antagonist actions.

The identification of residues that line neurotransmitter-binding sites and catalyze allosteric transitions that result in channel gating is crucial for understanding ligand-gated ion channel function. In this study, we used the substituted cysteine accessibility method and two-electrode voltage clamp to identify novel gamma-aminobutyric acid (GABA)-binding site residues and to elucidate the se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 45  شماره 

صفحات  -

تاریخ انتشار 2007